Возможности использования солнечной энергии Для подогрева воды и отопления в объекте Городской клинической детской больницы №5

Украина, Донецк, ул. Октября, 21

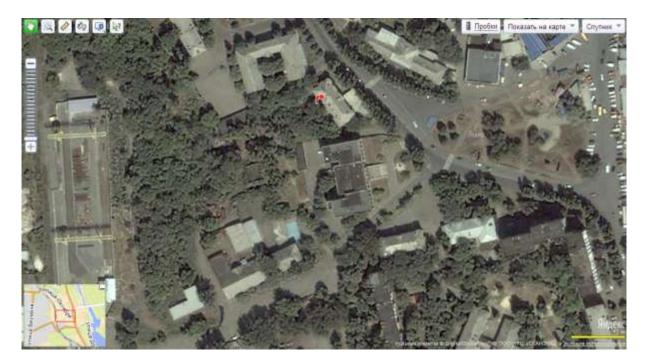
Введение в проблему

Ing.Zdeněk Pistora, CSc.

www.primetrade.cz

14 сентября 2010

28/10/2010 Страница 1 из 9


1. Введение в проблему

Целью этой студии является анализ возможностей практического использования солнечной энергии для отопления и подогрева воды в объекте - больнице. Вопрос рассматривается из 2 точек зрения:

- 1. Использование в рамках рассматриваемого объекта.
- 2. Использование в рамках городской сети центрального отопления.

2. Рассматриваемый объект

Рассматриваются возможности установки солнечных панелей на объекте детской больницы, расположенной по адресу: 83030, г.Донецк, ул. Октября, 21 с 2 площадками подходящими для установки панелей $2x340~\text{M}^2$

Рассматриваемый объект

3. Используемая технология

Предлагаем технологию производителя Changzhou SunPower Co. из Китая. Производитель пользуется сертификатом качества ISO 9000 и его изделия были сертифицированы для использования в EC (марка CE).

CERTIFICATE

The company

Changzhou Sunpower Solar Water Heater Co., Itd

#69 South Airport Road Luoxi 213136 CHANGZHOU PEOPLE'S REPUBLIC OF CHINA

with its production site in

Changzhou

hereby receives the confirmation that the product/s

Solar collectors

of the type

SPA-47/1500-20-C, SPA-47/1500-24-C, SPA-47/1500-30-C

conforms to

DIN EN 12975-1:2006-06 DIN EN 12975-2:2006-06 Specific CEN KEYMARK Scheme Rules for Solar Thermal Products

and is granted the licence to use the marks

in conjunction with the Registration No. below.

Registration No.: 011-7S460 R

Deutscher

Absentierung This certificate remains valid as long as the required surveillance

Teal

Copyrights the second surveillance and surv

DAP-ZE-2460.00

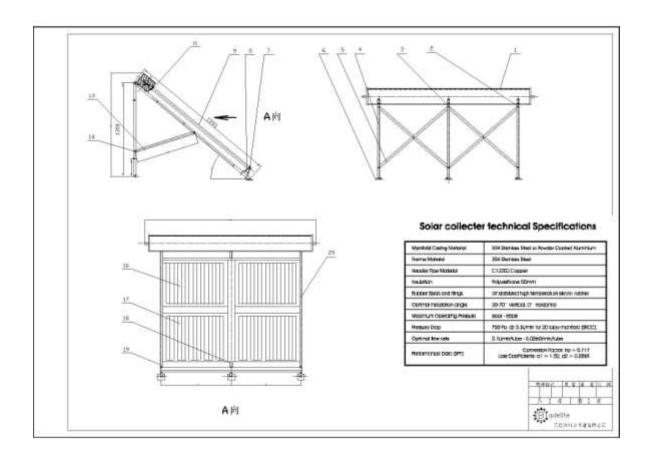
See annex for further information.

DIN CERTCO Gesellschaft für Konformitätsbewertung mbH Alboinstraße 56, 12103 Berlin

DIN CERTOO

2008-07-21

Dipl.-Ing. Peter Suxdorf - Managing Director -

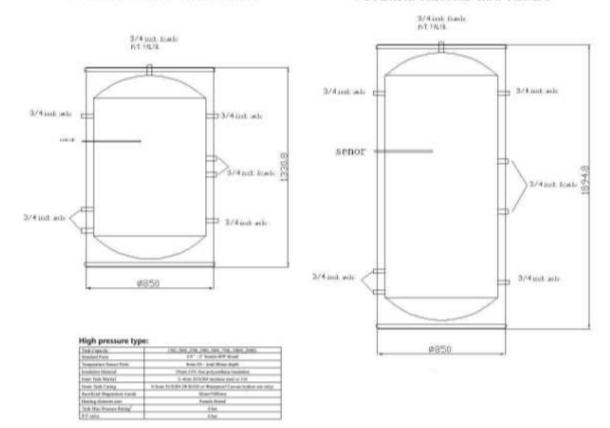


Для использования в Донецке мы выбрали панели типа SPA(B)-58/1800-30 – с поверхностью 3,84 м 2 . Панели поставляются с механической конструкцией, которая обеспечивает желаемый наклон 36 $^\circ$

3.1 Панель SPA(В)-58/1800-30 (260л)

2530 х 1520 х 1400 мм

28/10/2010 Страница 4 из 9

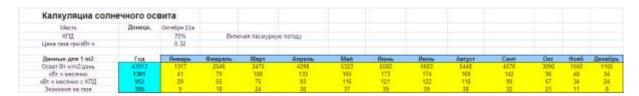

3.2 Бак 750 л 1985*850*850 мм, 112 кг

Существуют различные баки с различными объемами с 1,2 или 3 спиралями для обмена теплом. По нашему опыту самыми надежными являются баки 750 л .

		Higl	ı pressure t	ank					
Tank capacity	150L	200L	250L	300L	500L	750L	1000L	2000L	
Inner Tank Diameter	360mm	450	450	550	750	850	1000	1000	
Outer Casing Diameter	470	550	550	650	850	950	1100	1100	
Overall tank height	1430	1450	1760	1300	1400	1300	1300	2600	
Standard Ports	3/4"~2' female BPP thread								
Temperature Sensor Ports	8mm ID – total 80mm depth								
Insulation Material	56mm CFC free polyurethane insulation								
Inter Tank Material	2~4mm SUS304 Stainless steel or 316								
Outer Tank Casing ¹	0.5mm color steel or Waterproof Canvas (indoor use only)								
Sacrificial Magnesium Anode	20mm*400mm								
Heating elements port	Female thread								
Tank Max Pressure Rating ²	6bar								
P/T valve	6bar								

500L HIGH PRESSURE TANK DRAWING

750L HIGH PRESSURE TANK DRAWING


28/10/2010 Страница 5 из 9

4. Солнечные условия в Донецке и расчет необходимого количества панелей

Параметры солнечного освещения приведены в следующей таблице – получены из источника [1].

Цифры в таблице относятся к 1 кв.метру поверхности солнечных панелей. КПД системы принимается на уровне 70% по сравнению с [1] - этим получается достаточная устойчивость полученных результатов.

Для расчета необходимого количества панелей надо принять некоторые предпосылки:

- 1. Солнечная энергия может быть использована или только для употребления в рассматриваемом объекте или во всей системе теплоснабжения, из которой объект получает свое отопление. Между этими вариантами существуют значительные различия.
- 2. Количество установленных панелей ограничено несколькими факторами:
 - а. Система должна отвести все тепло, которое панели генерируют в период самого большого освещения для Донецка это июль. Если это тепло система не сможет отвести, есть реальная угроза повреждения панелей.
 - б. Количество панелей ограничено доступной площадью например, размерами крыши.
 - 3. Для равномерного обеспечения потребности теплой воды в течение суток в систему добавляется бак в котором хранится объем теплой воды равной суточному потреблению. В системе, где солнечные панели передают тепло в систему центрального отопления, этот бак не нужен.

Употребление тепла в рассматриваемом объекте приведено в следующей таблице...

Потребление тепла													
Поперіблення гептой фоды тыпр/день	4510	1649158											
		Sheeps	Февраль	Mapr	Anpena	Man	House.	Heim	Auryor	Cour	Our	Hosti	Дисабрь
Поперійлення техной якды питрідень		8150	6512	5550	4982	4662	4515	4510	4646	4962	5499	6425	9000
Температура холодной воды Температура теппой воды		10 60	10	12 66	15	15	15 60	15	15	15 60	15 60	12 60	10
Porparimenen «Bt. » / день — теппяя водя		173.2	378.1	309,3	200.5	243.6	235.9	226.6	242.7	258.7	287.3	358.1	454.4
Пограбление «Вт.ч / дунь -		3605	3605	3685	3635	3605					3606	3605	3605
Потебление иВт и / месяц за целья		126 454	111 S.SE	121 313	110 961	119.516	7 677	7.304	7.524	7.761	120 671	116 902	126 161

Технические результаты	для только местного потребления	Для употребления в системе центрального теплоснабжени я	Возможности площадки
Нужные кв.м солярных панелей	60	5261	500
Резервуар теплой воды литр	8150	8150	8150
Количество панелей	17	1478	140
Количество баков 750 л	11	11	11

Из таблицы вытекают следующее 2 возможности установки:

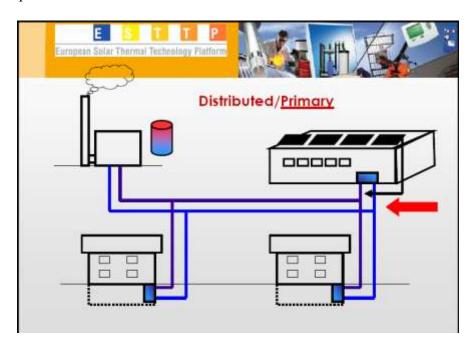
3.1 Изолированная установка в объекте

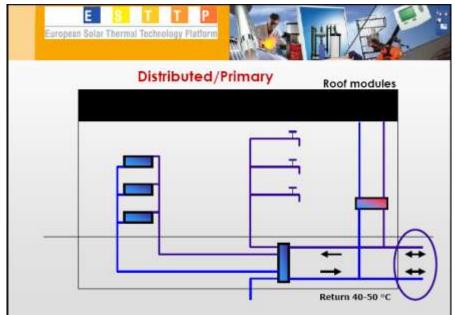
Панели дименсируются для летнего освещения и потребления энергии и полученная энергия никуда дальше не передается.. Для покрытия потребления изолированного объекта летом нужно 60 квадратных метров солнечных панелей. В зимних месяцах это количество панелей не успевает подогревать воду и надо использовать другие источники энергии. Из экономической точки зрения этот вариант самый плохой, но все-таки инвестиция вернется за 10 лет.

3.2 Установка по возможностям крыши

Исходя из доступных данных, на крыше объекта находятся 2 площадки подходящие для установки панелей, каждая 340 кв.м. На такой площади можно установить 140 панелей, что дает площадь 500 кв метров для освещения солнцем. *Надо провести контроль статической устойчивости конструкции крыши*.

Инвестиция вернется после 4 лет.


3.3 Установка, рассчитанная на потребность зимой


Этим вариантом не занимаемся, так-как необходимое количество панелей (1478) на крышу не поместится. Но – экономические результаты являются из всех вариантов самыми лучшими – инвестиция вернется через 3 года.

5. Способ подключения к системе

Самые лучшие результаты получаются, если панели подключены к системе центрального теплоснабжения и летом их энергия передается в систему для использования и другими объектами.

Схема подключения панелей к системе центрального теплоснабжения приведена на следующих картинках.

6. Экономика проекта

Обсуждение экономики проекта основывается на следующих предположениях:

- 1. Цена энергии состоит в 2010 г 0.81 грн/кВт.ч и в будущем будет расти на 5% ежегодно.
- 2. Годовые расходы, связанные с текущим ремонтом, составляют 5000 грн при изолированной установке или 15000 грн при подключении к системе центрального отопления.
- 3. Учетный процент для сравнивания вариантов предполагается 5%

7. Результаты и рекомендации

Из проведенных расчетов вытекает, что самые положительные экономические результаты получаются в случае установки 1478 панелей, которое обеспечат снабжение теплом в зимних месяцах. К сожалению, на площадь крыши столько панелей не поместится. В таком случае рекомендуем заполнить всю доступную площадь крыши панелями в количестве 140 штук и при этом избыточное тепло в летний период передавать в городскую систему. Если по каким либо причинам нет возможности передавать тепло в централизованую городскую систему, на крыше можно установить только 17 панелей, что обеспечит только летнее потребление тепловой энергии, но в зимних месяцах придется полагаться на другие источники энергии.

8. Источники информации

[1] Сайт Еврокомиссии PVGIS